Development of a hand operated dehuller

Objectives

1. To develop a hand operated dehuller for millets

- Ease of operation and handling
- ➤ Efficiency >95%
- ➤ Minimal broken grains
- ➤ 100% husk separation from dehulled grains

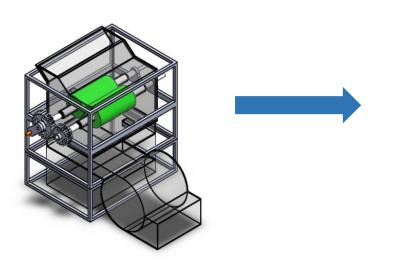
Millet dehulling equipment development

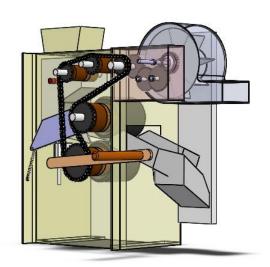
Testing

Results

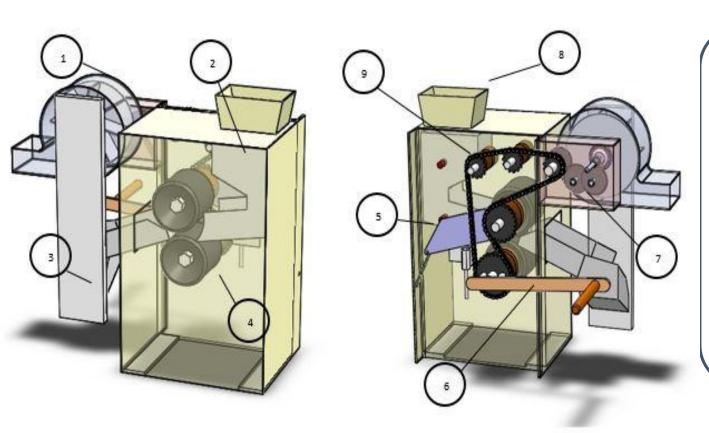
- Centrifugal
 - Low efficiency

- High efficiency
- High brokens
- Rollers
 - High efficiency
 - Low brokens

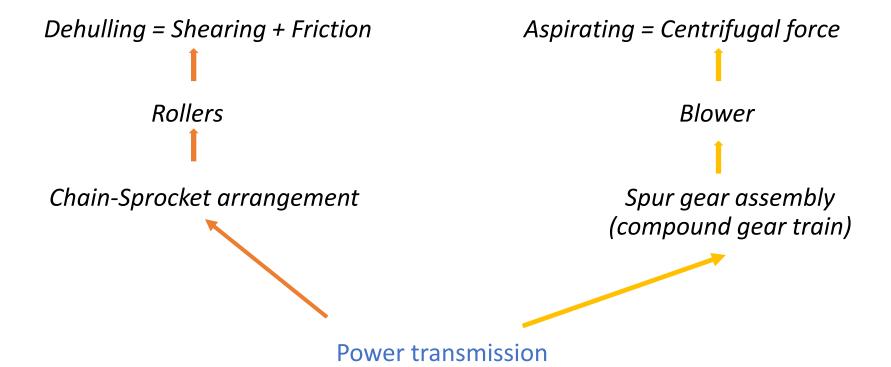

Design


Initial proposed design

Gears for operating the machine


Final implemented design

 Chain-sprocket mechanism for rollers; gears for blower fan


Design

DEHULLER COMPONENTS

- 1. Centrifugal blower
- 2. Feeding chute
- 3. Vertical channel
- 4. Rubber rollers
- 5. Lever for spacing adjustments
- 6. Crank handle
- 7. Gear box
- 8. Hopper
- 9. Chain-sprocket arrangement

Operating principles

Testing

The machine was tested with 3 millet varieties at 4 different roller spacing to determine the optimum spacing range suitable to dehull millets.

Testing of performance

Whole grain

Dehulled grain

Hulls

Broken grain

Testing

- Complete dehulling of the grains was achieved after three passes
- However, for kodo millet more than three passes are required to achieve complete dehulling

	Results (3 – pass)								
Roller spacing (in mm)	Foxtail millet			Kodo millet			Barnyard millet		
	Α	В	С	Α	В	С	Α	В	С
0.20	99.4	97.96	0.30	72.3	65.26	0.36	99.01	94.27	0.47
0.25	99.4	98.10	0.83	76.83	68.96	0.19	99.44	94.17	1.22
0.30	98.84	97.24	0.36	64.8	59.03	0.08	94.99	90.03	0.32
0.35	98.06	94.88	0.125	41.15	37.82	0.03	93.06	87.49	0.08

A – Dehulling efficiency; B – Head rice recovery; C – Percentage broken grains

Final design

Front view

Back view

Summary

- ✓ The fabricated dehuller can be used as a 3 pass processing system to dehull millet varieties like foxtail and barnyard.
- ✓ Reduced broken grains (to < 0.5-1.2%)</p>
- ✓ More than 99% hull separation was possible for foxtail millet and more than 93% for barnyard millet. Kodo millet achieved around 75% hull separation

Thank you

Questions

